## A Prototype of a Non-Invasive Real-Time Beam Size and Energy Spread Monitoring System in an EPICS Environment

Pavel Chevtsov



- Introduction
- Synchrotron radiation and its use for beam size and energy spread monitoring
- Synchrotron Light Interferometer (SLI) at Jefferson Lab
- Conclusions

**CEBAF** 

at

Jefferson Lab



experimental end stations



### high beam quality ???

- small beam size ( $\sim$ 30 µm on target)
- very small energy spread ( $\sim 2*10^{-5}$ )





A growing number of experiments at Jefferson Lab require at least 5 GeV, 100 μA CW electron beams with continuous (real-time) energy spread monitoring.



### Beam size and energy spread measurement methods





**OTR** 





High dispersion location 3C12 ( $\sigma_S < 0.08 \text{ mm}$ )

### In high dispersion areas:

- the beam energy spread:  $\sigma_E/E = \sigma_{beam}/d$
- we can relatively easily use synchrotron light to measure the beam size







## The diffraction limited resolution of synchrotron light imaging systems in the visible part of the spectrum [A.Hofmann]:

$$\sigma_{\rm S} \approx 0.3 \ (\lambda^2 \rho)^{1/3}$$

Example:  $\lambda \approx 630 \text{ nm}, \quad \rho \approx 40 \text{ m}$ 

 $\sigma_{\rm S} \approx 0.08 \; \rm mm$ 



### Synchrotron Light Monitor (SLM)



### Synchrotron Light Interferometer (SLI)



### SLM beam image



### SLI interference picture





$$I(x) = I_0 \left[ \frac{\sin(\alpha x)}{\alpha x} \right]^2 [1 + V \cos(kDx/L)]$$



$$\alpha = ka/2L$$

$$V = \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}}$$

$$\sigma_{beam} = \frac{\lambda R}{\pi D} \sqrt{0.5 \ln(1/V)}$$

van Cittert, Zernike, Mitsuhashi







## Synchrotron Light Interferometer installed at the high dispersion location 1C12





## SLI Control Components





# SLI Control and Image Processing Software

### SLI Control Software

Stepper-motor
Control
Software

Video Camera Control Software

Common Serial Driver/Device Library

EPICS
Distributed
Database

Multiplexed Maxvideo Software



### Stepper-Motor and Video Camera Control Software



Common Serial Driver/Device Library

Device Configuration Handler























### Maxvideo (MV, Datacube)





### SLI Image Processing Software





Beam Size and Energy Spread Calculations (GSL, Data Reliability Model)









SLI server

Main SLI Control Screen





#### Conclusions:

- We have built a prototype of a real-time non-invasive beam size and energy spread monitoring system (SLI) that has a very high resolution
- We have designed and created control and image processing software in an EPICS environment that can easily be used at all collaboration Institutes

### Some SLI pictures



















E N D

